Ja n 20 06 Jacquet modules of principal series generated by the trivial K - type Noriyuki ABE

نویسنده

  • Noriyuki ABE
چکیده

We propose a new approach for the study of the Jacquet module of a Harish-Chandra module of a real semisimple Lie group. Using this method we investigate the structure of the Jacquet module of principal series representation generated by the trivial K-type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ja n 20 06 Jacquet modules of principal series generated by the trivial K - type

We propose a new approach for the study of the Jacquet module of a Harish-Chandra module of a real semisimple Lie group. Using this method, we investigate the structure of the Jacquet module of principal series representation generated by the trivial K-type.

متن کامل

Generalized Jacquet modules of parabolic induction

In this paper we study the some generalization of Jacquet modules of parabolic induction and construct a filtration on it. The successive quotient of the filtration is written by using the twisting functor.

متن کامل

On quasi-baer modules

Let $R$ be a ring, $sigma$ be an endomorphism of $R$ and $M_R$ be a $sigma$-rigid module. A module $M_R$ is called quasi-Baer if the right annihilator of a principal submodule of $R$ is generated by an idempotent. It is shown that an $R$-module $M_R$ is a quasi-Baer module if and only if $M[[x]]$ is a quasi-Baer module over the skew power series ring $R[[x,sigma]]$.

متن کامل

On finitely generated modules whose first nonzero Fitting ideals are regular

A finitely generated $R$-module is said to be a module of type ($F_r$) if its $(r-1)$-th Fitting ideal is the zero ideal and its $r$-th Fitting ideal is a regular ideal. Let $R$ be a commutative ring and $N$ be a submodule of  $R^n$ which is generated by columns of  a matrix $A=(a_{ij})$ with $a_{ij}in R$ for all $1leq ileq n$, $jin Lambda$, where $Lambda $ is a (possibly infinite) index set.  ...

متن کامل

ar X iv : m at h / 06 01 47 2 v 1 [ m at h . Q A ] 1 9 Ja n 20 06 REPRESENTATIONS OF QUANTUM GROUPS DEFINED OVER COMMUTATIVE RINGS II

In this article we study the structure of highest weight modules for quantum groups defined over a commutative ring with particular emphasis on the structure theory for invariant bilinear forms on these modules.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006